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The flow of a stratified fluid toward a line sink in a rotating channel of finite width 
and depth is studied. The withdrawal flow is shown to be established by a set of 
Kelvin shear waves trapped within a distance of Nh/fn from the right-hand side wall 
(f > 0) looking in the direction of propagation, where n = 1,2, . . . is the vertical mode 
number. In  addition there are a set of waves (Poincare' modes) which propagate away 
from the sink with a cross-channel modal structure. The withdrawal flow has a 
boundary-layer structure: far from the right-hand wall the flow resembles that of 
McDonald & Imberger (1991), whereas close to the right-hand wall the development 
of the vertical structure of the withdrawal flow resembles that of the non-rotating 
case due to the presence of Kelvin shear waves. In a narrow channel Kelvin shear 
waves dominate the establishment of the withdrawal flow. The withdrawal flow is 
investigated for large times compared to the inertial period, where it is shown that 
the width of the boundary layer is of the same order as the distance downstream from 
the sink. The flow within the boundary layer is unsteady as the withdrawal layer 
thickness 6 continues to collapse indefinitely, while outside the boundary layer it is 
steady with S - fL/N, L being the horizontal lengthscale downstream from the sink. 
A scaling analysis is developed for the narrow channel case in which the cross- 
channel velocity can be ignored. The results are applied to actual field data, where 
it is shown that the effect of rotation may explain why previous non-rotating theories 
have been inaccurate in predicting withdrawal layer thickness. 

1. Introduction 
Owing to its importance to water quality engineering, the flow of a stratified fluid 

toward a sink has been extensively studied both theoretically and in the laboratory. 
In particular, engineers are interested in the vertical structure of the sink flow since 
this determines the water quality properties, such as the dissolved oxygen content, 
of the withdrawn fluid. (For a recent review of selective withdrawal, see Imberger & 
Patterson 1990). The studies have generally neglected the effect of rotation, on the 
grounds that the scale of most reservoirs is not sufficiently large for such effects to 
be important. However, as demonstrated in Ivey t Imberger (1978), when the 
results of these studies have been used to predict the withdrawal-layer thickness 
from given field data there has been disagreement between the predictions of the 
theory and observation. In particular Ivey & Imberger found that the two- 
dimensional theory of Imberger, Thompson & Fandry (1976) underpredicted the 

t Present address : Robert Hooke Institute, The Observatory, Clarendon Laboratory, Parks 
Road, Oxford OX1 3PU, UK. 
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withdrawal-layer thickness. I n  an attempt to reconcile this discrepancy they 
proposed that instead of using laminar values for the transport coefficients, good 
agreement could be found by using values which were an order of magnitude higher 
than their laminar values, presuming that turbulent processes are important in the 
diffusion of momentum and stratifying species. In a later paper, Ivey & Blake (1985), 
suggested that the nature of the sink, a point sink rather than a line sink, may result 
in a larger withdrawal-layer thickness. However, an application of their results 
overpredicts the withdrawal-layer thickness (see $4). An alternative explanation, 
advanced by Imberger (1980), is that rotational effects may be responsible for the 
apparent thickening of the withdrawal layer. 

The flow of a rotating stratified fluid toward a sink has received little attention in 
the literature despite its possible limnological and obvious oceanographical 
significance (see McDonald 1990 for an oceanographic example). Whitehead (1980) 
studied the flow of a rotating stratified fluid toward a point sink remote from any 
sidewalls and having axial symmetry. Using a hydraulic-type analysis he showed 
that rotation causes the withdrawal layer thickness to grow like if where t is time. 
This prediction was confirmed with a series of laboratory experiments. Kranenburg 
(1980) also used axisymmetry to study the case where viscous diffusion of vorticity 
dominates and found that transport toward the sink was almost entirely in the 
bottom and interfacial Ekman layers. 

Monismith & Maxworthy (1989) performed experiments on the withdrawal from a 
rotating stratified fluid in a rectangular container via a point sink located in one of 
the sidewalls. The sink flow was initiated from a quiescent state and they found that 
the flow was established by long-wavelength boundary-trapped Kelvin waves which 
they called Kelvin shear waves, a term also adopted in this paper. The Kelvin shear 
waves propagate cyclonically around the tank setting up an anticyclonic withdrawal 
layer in their wake. The flow eventually became unstable, owing to sidewall viscous 
boundary-layer separation, and broke down into a series of counter-rotating gyres. 
One main conclusion they reached was that there was no withdrawal layer thickening 
due to rotation within the parameter range of their experiments, i.e. the withdrawal- 
layer thickness is determined solely by non-rotating dynamics. They explained their 
results using scaling arguments based on point sink theory which showed that iff < 
N then there will be no thickening of the withdrawal layer due to rotation. 

Selective withdrawal theory may also be applied to outflows from straits such as 
the Strait of Gibraltar, where, owing to  the large horizontal lengthscales involved, it 
is expected that rotational effects be important. Indeed, Hogg (1985) representing 
the Mediterranean outflow with a three-layer model for the stratification in a channel 
of slowly varying width and depth, showed that rotation produces anticyclonic 
circulation consistent with the observations of the Alboran Gyre. Whitehead (1985) 
constructed a laboratory model of the Mediterranean outflow using a two-layer fluid 
and incorporating realistic geometry. Selective withdrawal was observed in which 
rotational effects were clearly evident. In  particular the uplift of the density surface 
exhibited lateral variation across the width of the straight and large gyres formed 
which were also consistent with observations. 

The above examples show that rotation may, in some cases, have profound effects 
on the withdrawal flow but minimal effect in other cases. It is clear that the general 
withdrawal problem will depend on many factors such as the strength of the sink 
flow, the relative magnitude of stratification and rotation effects, the magnitude of 
the effective viscosity, etc. Even the assumed geometry and topography of the 
withdrawal domain will strongly influence the withdrawal flow. 
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In an attempt to address the general withdrawal problem which takes into account 
some of the above factors, McDonald & Imberger (1991) (hereafter referred to as MI) 
studied the flow of a rotating stratified fluid in an unbounded domain. Specifically, 
they looked at the initial-value problem of suddenly starting the sink flow and found 
that if f < N the initial potential flow collapses to a horizontal withdrawal-layer 
structure. The collapse is eventually halted as baroclinic production of vorticity 
caused by bending of the isopycnals toward the sink is balanced by either advection 
of vorticity, viscous diffusion of vorticity or production of vorticity as vortex 
filaments are tilted by the sink flow. A classification scheme generalizing that of 
Imberger et al. (1976) for the non-rotating case based on two parameters was 
introduced to describe the possible steady states and the corresponding withdrawal- 
layer thicknesses. When Coriolis production of vorticity balances baroclinic 
production of vorticity (i.e. the thermal wind balance) it was shown that the 
withdrawal-layer thickness, 6, is given by 6 - f L / N ,  where L is the horizontal 
distance from the sink. This linear growth from the sink is faster than the Li growth 
for the viscous-buoyancy or the constant-thickness layer predicted by the 
buoyancy-inertial case. Hence, depending on the magnitude off / N ,  which may be 
several orders of magnitude less than unity, and the distance from the sink, rotation 
has the potential to thicken the withdrawal layer. This is in contrast to the 
experimental findings of Monismith & Maxworthy (1989) for a point sink in a 
rectangular channel. When the theory of MI  was used to predict the withdrawal- 
layer thickness of the Wellington Reservoir using the field data reported in Ivey & 
Imberger (1978), it was found that their theory predicted a withdrawal-layer 
thickness of an order magnitude greater than that observed. 

A possible reason for the above discrepancies in the theory of MI  when applied to 
field data is the neglect of side boundaries perpendicular to the axis of the sink. Such 
boundaries are present in any withdrawal problem involving reservoirs and also in 
outflows from straits and must, therefore, be incorporated in any realistic reservoir 
withdrawal study. Gill (1976) showed the dramatic effect that such sidewalls may 
have on the dynamics of a rotating fluid. In particular he studied the adjustment 
under gravity of an initial discontinuity in free-surface elevation in a rotating 
channel using the shallow-water equations for a single homogeneous layer, and 
showed that as the channel width went to zero rotational effects were suppressed. 
Further, he showed that the dynamics of fluid contained in a channel of finite width 
displayed characteristics common to the limiting cases of both infinite width (no 
sidewalls) and vanishing width. In the light of this, the failure of MI to predict the 
correct withdrawal-layer thickness may be due to the neglect of sidewalls. 

Motivated by the above discussion, the withdrawal of a stratified fluid from a 
rotating semi-infinite channel is studied in this paper in order to determine the 
influence of sidewalls on the withdrawal problem. Throughout this study it is 
assumed that the channel is filled with a density-stratified fluid with constant 
buoyancy frequency N .  Further, the channel rotates with uniform angular velocity 
3 and it is assumed that f Q N as is the case in most naturally occurring situations. 
Before proceeding to an investigation of the influence of sidewalls, for the purposes 
of comparison, $ 2  examines the evolution of the withdrawal flow in a channel of finite 
height but of infinite width using an appropriate distribution of sinks of the type 
discussed in MI. Sidewalls are introduced in $3. The development of the withdrawal 
flow is examined and compared to the infinite-width case of $2. Section 4 examines 
the large-time behaviour of the withdrawal flow and the boundary-layer structure. 
On the basis of the results of the previous sections a scaling analysis for narrow 
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reservoirs is developed in f 5. Conclusions are presented in 9 6 and are discussed in the 
context of the experimental results of Monismith & Maxworthy (1989). 

2. Infinitely wide channel 
To elucidate the role of internal wave radiation in establishing the withdrawal flow 

it is instructive to investigate the limiting case of a channel of infinite width (i.e. no 
sidewalls) but finite height ( - h  < z < h)  before proceeding to the case of finite width. 
In this case - 00 < y < co, a line sink of strength q( t )  extends across this distance, 
and the motion may thus be considered as two-dimensional as all flow variables 
become independent of the y-coordinate. 

The analysis begins by looking at the time development of the sink flow. Initially 
the fluid is at rest in the channel and at time t = 0 the line sink is suddenly switched 
on. MI showed that nonlinear effects are initially confined to distance of (q /N) i .  Since 
this distance is typically less than the scale depth of the reservoir h, linear theory will, 
at least initially, be valid. The governing equations are then 

Here u is the velocity component in the x-direction, w is the velocity component in 
the z-direction, v the azimuthal velocity along the axis of the sink, P is the pressure 
perturbation from hydrostatic pressure and p(x, z ,  t )  is the variation of the density 
from the undisturbed density po(z). The density perturbation is assumed small 
relative to po. The buoyancy frequency N is defined by N2 = - ( g / p o )  (dpo/dz) and is 
assumed constant. The Boussinesq approximation is made, in which the density po(z) 
in the above inertial terms is approximated by the density at the level of the sink, 
i.e. po(z) x po(0). This is valid for P h / g  < 1 where h is the vertical height of the 
channel. This is easily satisfied for a typical reservoir operation (Imberger 1972). 

Rather than solving the above equations for the given channel domain, it proves 
easier to make use of the solution of MI for the unbounded case and use the method 
of images to construct the solution which satisfies the boundary conditions of no flow 
normal to the top and bottom of the channel. In particular, MI solved (2.1)-(2.5) in 
an unbounded domain with a sink at  the origin using Laplace transforms in time, 
where the Laplace transform has the usual definition: 

q(s) = g ( t )  e-st dt. Jom 
The velocity components (in Laplace space) are given by 

and 
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Further, using (2.3) the transformed azimuthal velocity is determined : 

The azimuthal velocity is in a direction parallel to the axis of the sink and is a 
consequence of angular momentum conservation ; fluid drawn toward the sink is 
required to increase its swirling velocity. The above solutions are discussed in detail 
in MI where it is shown that, for f Q N ,  the flow collapses to a horizontal withdrawal 
layer where a steady state occurs in the (x, 2)-plane when the Coriolis production of 
vorticity by vortex filament tilting balances baroclinic production of vorticity, i.e. 
the thermal wind balance. For such a balance it was shown that if L is the horizontal 
lengthscale the vertical scale or the withdrawal-layer scale is given by 6 - f L / N .  

For horizontal planes located at 2 = f h, and with a sink at  the origin, the method 
of images is used to satisfy the no-flow condition on each boundary. Thus, for every 
sink a distance E below a boundary there is a sink located at  a distance E above the 
boundary. The volume flux needs to be adjusted since in the channel problem only 
positive values of x are considered here whereas the above expressions for the 
velocity components apply for positive and negative x. Effectively this means 
doubling the volume flux in (2.6)-(2.8), i.e. replacing q by 2q. This leads to the 
following infinite series for the horizontal velocity : 

Henceforth, it is assumed that a sink of constant strength q has been initiated from 
rest, so that q(s) = q/s .  Using the identity (which may be proved by showing that 
both the left-hand and right-hand sides have the same Fourier sine transform in z) 

the expression for horizontal velocity is 

(2.10) 

A similar expression may be obtained for the vertical velocity a. Putting f = 0 in 
(2.10) (i.e. a stratified non-rotating fluid) the solution reduces to the horizontal 
velocity in Laplace space found by Pao & Kao (1974) for the withdrawal of a 
stratified fluid from a horizontal duct. 

The horizontal velocity (2.10) is examined for times large compared to the 
buoyancy period, i.e. t @ N-l,  which implies s < N .  This is equivalent to saying that 
the withdrawal layer has collapsed to sufficient 'thinness ' that the hydrostatic 
approximation may be employed. It is convenient to non-dimensionalize equation 
(2.10) using h as the vertical scale, Nh/f as the horizontal lengthscale, f-' as the 
timescale, and q/h as the horizontal velocity scale. With this scaling, and the use of 
the hydrostatic approximation, the non-dimensional horizontal velocity is 
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The Laplace transform in the above expression is inverted in the Appendix. The 
result is 

(2.12) 

where J1 is the first-order Bessel function of the first kind. Thus for times large 
compared to the buoyancy period the velocity field evolves as a series of discrete 
fronts propagating with velocity l/nn or in dimensional terms NhlnTc. This is 
analogous to the evolution of sink flow of a stratified non-rotating fluid in a 
horizontal duct discussed by Pao & Kao (1974). They described the flow in the linear 
hydrostatic limit by a series of long internal gravity waves (or shear waves as they 
are termed in the selective-withdrawal literature) propagating away from the sink 
with velocity Nhlnn,  where the thickness of the withdrawal layer at  any point is 
equal to the vertical wavelength of the most recent shear wave moving past that 
point. Equation (2 .12)  can be thought of as the shear waves of Pao & Kao modified 
by a Coriolis-induced factor in square brackets. 

In  the large-time limit the vertical scale changes from h to 6, the withdrawal-layer 
thickness, and the resulting flow is discussed in MI. Briefly, u and w reach steady 
state, v increases linearly with time and the withdrawal flow is governed by the 
thermal wind balance in the azimuthal vorticity equation, i.e. fv,  - gpx/po. 

3. Finite-width channel 
Consider now a channel of finite width as shown in figure 1 .  The channel extends 

from x = 0 to cg and is bounded in the vertical by no-flow boundaries at  z = f h .  The 
sidewalls of the channel are located at  y = 0 and W .  A line sink at  x = z = 0 stretches 
from y = 0 to W and has uniform strength per unit width of q m2 s-l. For the initial 
development of the flow from a state of rest the motion is governed by the linear 
equations of motion but now there is dependence of the flow variables on the 
transverse coordinate y. The equations of motion are then 

The symbols are defined in section 2 and the Boussinesq approximation has been 
made where the density po is the density at the level of the sink z = 0. These 
equations are to be solved according to  the boundary conditions 

w = o  ( z = & h ) ;  v = o  ( y = O , W ) ;  

where H ( t )  is the Heaviside function. These boundary conditions correspond to no 
flow normal to the boundaries at the top and bottom of the channel and at the 
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z 
A 

y = o  / 
Line sink, q(m2/s) 

FIQURE 1. The channel geometry. 

channel sidewalls. The condition at x = 0 represents a line sink across the channel a t  
mid-height. Representation of the sink by a delta function is a mathematical 
convenience. A more realistic distributed sink would only affect the modal amplitudes 
of the shear waves (Monismith, Imberger & Billi 1988). The condition a t  large 
distances from the sink represents uniform flow toward the sink which is established 
instantaneously by the initial potential flow (see below). 

Just after the sink flow has been turned on, rotation and stratification have no 
effect since their influence is manifested through forces proportional to the 
displacement of fluid particles which, initially, are zero. Hence, since the fluid is 
incompressible, the appropriate initial condition to use is that of potential flow and, 
in particular, the potential flow caused by a line sink in a horizontal duct (the 
sidewalls have no effect initially since v = 0). Denote this velocity potential by $, so 
that at  t = 0, u = qiX, w = $ z ,  v = p = 0, and define Plp, = $+p.  The problem is now 
formulated in terms of p ,  the deviation of the pressure field divided by the mean 
density from the initial velocity potential. First, the Laplace transform of (3.1)-(3.5) 
is taken and the velocity components in Laplace space are found in terms of p .  The 
results are 

The above velocity components are then substituted into the Laplace transformed 
version of the conservation of mass equation (3.1) to yield the following single 
equation for p: 

(3.9) 
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p z = O  ( z=+h) ,  (3.10) 

fpx-spy = 0 (y = 0, W ) ,  (3.11) 

fpy+spx+(s2+f2)q/2hs (x+ a), (3.12) 

firy+spX = (s2 + j 2 )  (qlhs) S(z/h) (x = 0). (3.13) 

The task now reduces to  solving (3.9) subject to boundary conditions (3.10)-(3.13). 
By virtue of the zero-gradient boundary condition (3.10) and (3.12), the following 
form of solution is tried for p: 

nnz 
2hs 

(3.14) 

Here $,(x,y) (not to  be confused with the velocity potential mentioned earlier) 
satisfies the Helmholtz equation 

in the semi-infinite strip 0 < x c 00, 0 < y < W ,  subject to 

f$nx-s$ny = 0 

f dny +a$,, = (s2 +f”/s (x = 0). 

(Y = 0, W ) ,  
$ n + O  ( x - t ~ ) ,  

I n  writing (3.17) the identity (Stakgold 1967, p. 51) 

(3.15) 

(3.16) 

(3.17) 

has been used. A solution for $, satisfying (3.15) and (3.16) is 

$,, = A,exp[ A,exp { - ( s 2 + f 2 n 2  -- +- m2)t 7cx } 
s 2 + P h 2  WZ 

where the A ,  and A, are to be determined from the boundary condition (3.17). 
Substitution of (3.18) into (3.17) yields the condition 

mnY f a  sin (mny/ W )  
cos--- 

s2+f2 h2m2 m4h4 
m-1 +- 

where 

and 

snn 
h(s2 +hn)iAo 

B, = - ( 3 . 2 0 ~ )  

(3.20b) 
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The task of finding the coefficients Bo and Bm from (3.19) is difficult since the function 
involved in the curly brackets is not self-adjoint. This is a result of the 'oblique' 
derivative at  the boundary condition specified by (3.11). However, for times large 
compared to the buoyancy period, i.e. s -4 N, it is clear the amplitude of the sine 
term in (3.19) is much less than the amplitude of the cosine term except, possibly, 
when n/m+ 00. Fortunately, in this limit the terms in (3.18) involving A, become 
exponentially small, for non-zero x, and are therefore unimportant. Thus the 
coefficients are evaluated with the understanding that s -4 N, or, equivalently, the 
hydrostatic limit, i.e. only the cosine expansion in (3.19), is found. Before the 
coefficients are evaluated, (3.18) and (3.19) are non-dimensionalized. Since large 
times only are being considered, as in $2, the Laplace transform variable is non- 
dimensionalized by f, the horizontal lengths x and y by N h / f  and the vertical 
lengthscale by h. Assuming then that s 4 N this leaves one free parameter in the 
system B = Wf/Nh,  i.e. the ratio of the width of the channel to the Rossby radius of 
deformation, N h / f ,  of the primary (n = 1) mode. In  terms of B, the coefficients are 

and 

Bnx 
1 -exp (-Bnx) 

B, = (3.21 a )  

(3.21 b )  

The transformed velocity in the x-direction, using (3.6) with s -4 N, is 

+ C B m  -exp{ - [ s ~ + l + & ] n x x } ~ o s ~ ] c o s ( n n e ) .  (3.22) 
m-1 S 

The Laplace transform inversion of (3.22) can now be performed, using the 
Appendix, giving 

m u = --- 1 2 [B,H(t-nnz)exp[-nxy]+ BmH(t-nnx) 

2 n-1 m-1 

The expression (3.23) for the horizontal sinkward velocity exhibits interesting 
behaviour. The first term represents the spectrum of shear waves of Pao & Kao 
(1974) modified by the factor exp (-my),  i.e. an exponential cross-channel decay 
away from the wall at  y = 0. These are in fact the Kelvin shear waves which were 
postulated to exist and observed experimentally by Monismith & Maxworthy (1989). 
Each mode propagates away from the sink a t  the appropriate long wave speed l /nx 
(or, dimensionally, Nh/nx) with the wall (y = 0) on its right looking in the direction 
of propagation (forf > 0). For convenience, call this wall the right-hand wall and the 
wall at y = W the left-hand wall. Each mode is trapped within a distance l / n x  (or, 
dimensionally, Nhlfnx), a distance of one Rossby radius of deformation, against the 
right-hand wall. In addition to the Kelvin shear waves there is a spectrum of waves 
represented by the second term in (3.23). These, as will be shown, are closely related 
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to the waves which establish the withdrawal flow in the infinite-width case, i.e. (2.12). 
They do not decay away from the wall but, rather, exhibit a cross-channel modal 
structure. Following Gill (1976) these are termed Poincar6 waves. 

Thus the picture obtained so far is that the withdrawal flow is initiated by a series 
of waves which propagate away from the sink with the appropriate long-wave speed. 
The presence of rotation causes a particular class of these waves to be trapped 
against the right-hand wall. The establishment of the withdrawal flow is similar to 
Gill (1976) who considered the adjustment under gravity in a rotating channel of an 
initial discontinuity in free-surface height. In  fact the integral in (3.23) is, not 
surprisingly, similar to that in Gill’s solution. Gill’s analysis of the adjustment of an 
initial discontinuity in surface height uses the shallow-water equations (equivalent to 
the approximation t + N-’ made here) and considers the propagation of the n = 1 
mode only. The establishment of the withdrawal flow here proceeds similarly to Gill 
for the n = 1 mode : the combination of the Poincar6 and Kelvin waves serves to shift 
the initially parallel and equidistant streamlines in the (5, 2)-plane, to concentrate 
them against the right-hand wall. In this case, as each successive mode passes, the 
withdrawal current intensifies against the right-hand wall. The vertical lengthscale 
collapses from the channel height h to 6, the withdrawal-layer thickness, and thus 
(3.23), based on an infinite set of vertical modes with vertical scale h, is no longer a 
valid representation of the withdrawal flow. The very large-time ( t  % f - l )  behaviour 
is investigated in the next section. 

Before looking at  the large-time behaviour of the withdrawal flow it is instructive 
to investigate (3.23) in the limiting cases of very narrow and very wide channels. As 
the channel width B goes to zero it follows from (3.21 a, b )  that, for a given mode n, 
B, + 1 and B,  + 0. Hence (3.23) reduces to 

l r n  
u(z, y, 2 ,  t )  = --- H ( t - n m )  exp ( -nny/B) cos (nm).  (3.24) 

Except for the cross-channel decay factor exp ( - m y )  this is precisely the solution 
found by Pao & Kao (1974) for the flow of a stratified non-rotating fluid toward a 
sink in a horizontal duct. Hence in the limit as the channel width goes to zero the 
transient flow is dominated by Kelvin shear waves and the cross-channel velocity is 
negligible. 

2 n-1 

For a given mode in the wide channel limit B +  00, (3.23) reduces to 

1 ~- 

2 n-1 

cos (nm).  (3.25) 
( t  1- (7baz)a) t + [ 1 - n m  S, 

The solution obtained in the limit B +  00 is not the same as the solution for the 
infinitely wide case derived in $2. This is because even in the limit B + rn there is still 
a wall a t  y = 0 on which the boundary condition v = 0 must be satisfied. However, 
in the wide channel limit, far enough from the sidewall boundary y B 1 ,  the terms 
involving y in (3.25) become exponentially small and the solution for the horizontal 
velocity becomes identical to that derived in $2. Hence in the wide channel limit it 
is clear that a ‘boundary layer’ structure exists where, close to wall, Kelvin wave 
effects dominate and further from the right-hand wall the flow develops as in the 
infinitely wide case of $2. 
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Inspection of (3.23) shows that the sink flow never reaches steady state, since an 
infinite number of modes are generated. As t +  00 the solution presented in this 
section may be thought of as an outer solution since it is based on the large 
lengthscale h and ignores the small lengthscale 6, the withdrawal-layer thickness. 
Indeed, in the limit t + 00 it can be shown that the vertical velocity number vanishes 
and the horizontal flow is geostrophic, consistent with the outer view that fluid enters 
the sink from an infinitely thin layer at the level of the sink in a channel of depth h. 
Of interest here is the vertical structure of the withdrawal flow on a scale of the 
withdrawal-layer thickness. This is investigated in the next section. 

4. Large-time behaviour 
As the withdrawal flow collapses to a thin horizontal layer the vertical lengthscale 

changes from the channel height h to 8, the withdrawal-layer thickness. Hence a t  
large times the behaviour of the withdrawal flow should be independent of the 
channel height. To model the large-time behaviour consider a channel of width W but 
now with no rigid lid or bottom. That is, the domain is unbounded in both the 5- and 
z-directions, i.e. - 00 < x < 00 and - 00 < z < 00. Although the region x < 0 is not of 
interest, it is retained here to enable ease of solutions via Fourier transform. As will 
be seen, such a model will enable the boundary-layer nature of the withdrawal flow 
to be investigated. Rather than representing the sink in the boundary conditions as 
done previously, it proves to be convenient to represent the sink in the conservation 
of mass equation (3.1), viz. 

u,+vy+w, = -qH( t )S(z )S(z ) .  (4.1) 

Proceeding as before, the Laplace transform in time is taken and the velocity 
components (3.6)-(3.80 are derived. Further it is assumed that t % N-l,f-’ or, 
equivalently, s 4 N , f .  This has the effect of filtering out the fast-timescale 
inertiwgravity waves. Substitution of (3.6)-(3.8) into (4.1), yields an equation for p: 

F,, +Fyy +fJ,-,.,. = %(x) S* S(z’), 

where z’ = Nz/f. Equation (4.2) is to be solved subject to the condition that the 
velocity normal to the sidewalls at  y = 0 and W vanish which, as before, in terms of 
p reads 

Since the domains is unbounded in the x- and z-directions and the forcing is 
contained in (4.1) then (3.12) and (3.13) are replaced by the condition that the 
velocity components vanish at large distances from the sink, i.e. 

f p - - -  , s p , - o  (y=O,W).  (4.3) 

p,,f~, , .+o as ( X ~ + Z ’ ~ ) ~ - + ~ O .  (4.4) 

Solution of (4.2) proceeds by way of a double Fourier transform defhed by 

p( k, 1)  = I:m p(x,  z’) ei(kz+zz’) dx dz’, 

with the corresponding inverse 
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Taking the Fourier transform of (4.2) and (4.3) gives the following equation set for 
p: - 

Rather than solving (4.5) for p i t  proves simpler to first solve for Bsince the boundary 
conditions apply directly to  v. The Fourier-Laplace transform of the cross-channel 
velocitv obevs - 

gyy-(k2+Z2)E= -qNik/s2 
v==  0 (y = 0,W). 

Equation (4.6) has solution 

}. (4.7) 
sinh [(k2 +Z2)i y] +sinh [(k2+Z2)i (W- y)] 

sinh [ ( k2 + Z2)i w] i1 - s2 k2 + Z2 
- - qN ik v = -- 

Rather than inverting the Fourier transform in (4.6) for arbitrary W the 
main features of the withdrawal flow are evident in the wide channel limit, i.e. 
W(k2 +Z2)i >> 1 with y/W < 1. In this limit V= becomes 

The inverse Fourier transform can be calculated by substituting k = r cos 8 ,1=  r sin 
8 and integrating first with respect to r .  Standard representations of Bessel functions 
(e.g. McLachlan 1955, p. 61) may then be used to perform the &integral. The inverse 
Laplace transform is straightforward and the final result for the cross-channel 
velocity is (in terms of the original variable z )  

v=- qNf2t x Y 
27c f 2x2 +FZ2 (x2 + y2 + (N/  f )2  22); 

(4.9) 

Several features are immediately obvious. The cross-channel velocity increases 
linearly with time as in MI. As y+0, i.e. close to  the sidewall, v vanishes in 
accordance with the boundary condition. It is clear that  v has a boundary-layer 
structure in the cross-channel direction in which the boundary-layer thickness scales 
as the downstream distance x. For distances y % x the azimuthal velocity is 
independent of y and is identical to  that described in MI. For y < x the azimuthal 
velocity is small relative to that outside the boundary layer. The boundary-layer 
structure could be inferred directly from (4.8) where for (kz+Z2)i y % 1, implying y % 
x, the exponential part of (4.8) may be ignored and the resulting Fourier-Laplace 
inversion yields the azimuthal velocity of MI. 

The factor l/s2 in (4.7) indicates that  the cross-channel velocity w increasing 
linearly with time is a general result and is independent of channel width. This result 
can be explained using the equation for the vertical component of the vorticity 6 = 
v, - vy which, by eliminating P from the horizontal momentum equations (3.2) and 
(3.3) and using conservation of mass (3.1), satisfies tt = fw,, i.e. as vortex filaments 
in the withdrawal layer are drawn toward the sink they are compressed producing 
negative vorticity (Pedlosky 1979 ; Monismith & Maxworthy 1989). Vorticity 
production through this mechanism continues as vortex filaments drawn toward the 
sink are compressed in the withdrawal layer. In a real fluid the cross-channel velocity 
will eventually become steady through the action of viscous or nonlinear effects. 
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It is instructive to investigate the structure of the sinkward velocity u. To 
calculate u the cross-channel momentum equation is used, viz. 

vt + fu = -p ,  

Since v is already known for large times it remains to calculate p, .  From (4.5) and 
(4.7), in the wide channel limit, the Fourier-Laplace transform of p,  is given by 

(4.10) 

Instead of inverting this Fourier-Laplace transform in its present form, the task is 
simplified by making use of the boundary-layer nature of the withdrawal flow. At  
large distances from the wall f& is exponentially small and the primary balance in the 
cross-channel momentum equation is vt - fu. In unsteady flow, close to the wall, by 
virtue of the no-flux boundary condition the azimuthal velocity is small and thus 
baroclinic vorticity production gpz cannot be balanced by the vortex tilting term fv,, 
i.e. the thermal wind balance cannot be satisfied. This means that as vorticity 
continues to be produced by baroclinicity, inside the boundary layer the withdrawal 
layer continues to collapse beyond the steady-state thickness f x /N it attains outside 
the boundary layer. Thus, at  large times it is expected that within the boundary 
layer the vertical scale is much smaller than the horizontal scale and therefore k 4 
1 in the boundary layer. Such an assumption was also employed by Wong & Kao 
(1970) in determining the steady-state flow of a stratified fluid past an obstacle. 
Making the approximation k 4 1 in (4.10) and carrying out the Fourier inversion 
yields 

= o  (x<O).  (4.11) 

The assumption that s 4 f does not necessarily imply that p ,  has become steady. 
From (4.11), for a given distance downstream x ,  the time taken for steady state to 
be reached depends on the distance y from the sidewall, i.e. steady state is reached 
when t % x / ( y f ) .  Thus, for the times being considered here (t  9 f - l )  steady state is 
certainly reached outside the boundary layer but may still be unsteady within the 
boundary layer. The Laplace inversion of (4.11) yields for x > 0 

!IN Y { 1 -exp (-5) [ c o s y -  Ntz (z/y) sin- ““1) X (4.12) 
p g  = T y 2 +  (N/  f ) 2 2 2  

and is zero for x < 0. Therefore at  a given x the sinkward velocity is given by 

( x  > 0) 
u =-ALL P N  X Y 

f 2 ~ f  x2 + (N/ f )2 2’ (x2 + y2 + (N/ f )’ z2)i  

( x  < 0). qN X Y 
2~ f x2 + (N/ f )2 2’ (x2 + y2 + (N/ f )2 z2)i 

= -- (4.13) 

The asymmetry in the sinkward velocity about x = 0 is because the Kelvin waves 
initiated by the sink propagate away from the sink with the wall on their right, i.e. 
Kelvin waves propagating toward a direction of decreasing x along y = 0 are not 
permissible (although, this direction is not of primary interest here). For y $- x the 
sinkward velocity u becomes that of MI. For y 4 x the flow continues to collapse 
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FIQURE 2. Sinkward velocity (non-dimensionalized by q/L) profiles at distance L from the sink for 
various cross-channel positions y = 0.01~5 (-), (2) y = 0.1L (---) and (3) y = L ( .  . . . . .). The 
graphs correspond to times (a) ft = 10, ( b )  ft = 20 and (c) ft = 100. 

beyond a thickness of f x / N .  This behaviour is illustrated in figure 2 which shows the 
velocity profile u(z), non-dimensionalized by q/L, at x = L,  where L is a lengthscale 
measuring the distance from the sink to the point of interest, for three different 
locations from the wall, namely, y = O.OlL,O.lL,L. Each of the three plots, (a) ,  ( b )  
and (c), corresponds to a different time : ft = 10,20,100. At ft = 10 it is clear that the 
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thickness of the withdrawal layer increases away from the right-hand wall. Also, the 
profile at  y = L shows no sign of transient behaviour since there are no regions of flow 
reversal, i.e. it has reached its steady state. This profile is the same as predicted by 
MI. At f t  = 20, close to the wall at y = O.OlL,O.lL the withdrawal layer continues to 
collapse. The profile at  y = 0.1L is beginning to show signs of approaching a steady 
state as the magnitude of the oscillations decreases. At  even larger times (ft = 100) 
the arrival of waves, given by (4.12), has produced a thin withdrawal layer at y = 
0.01L in which the fluid velocity toward the sink is large compared to its value 
outside the boundary layer. The situation is reminiscent of the non-rotating study of 
Pao 81, Kao (1974) who showed that the successive arrival of modes of smaller and 
smaller vertical wavelength produces a collapsing withdrawal layer of increasing 
velocity. At y = O . U ,  L the withdrawal flow has reached a steady state. 

The horizontal velocity field at z = 0 is illustrated in figure 3 in the domain 0 < 
y 6 2L, 4L < x 6 20L for times ft  = 10,20,100. At jt = 10 the sinkward velocity 
dominates everywhere. As time increases the cross-channel velocity increases 
linearly owing to comparison of vortex filaments as evident in figure 3 ( b )  for ft = 20. 
The sinkward velocity also increases with time, but this increase is dependent on the 
(x, z )  location (see (4.12)). At a given x the increase in the sinkward velocity is linear 
with time for y + 0, but for large y the sinkward velocity is constant. The net effect 
is that the sinkward velocity continues to dominate the withdrawal flow in regions 
close to the right-hand wall but the cross-channel velocity becomes increasingly 
important further from the right-hand wall. This is made even more evident at much 
larger time ft = 100 in figure 3 ( c ) .  At this time the cross-channel velocity has 
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increased sufficiently to be significant everywhere except in regions very close to the 
right-hand wall, i.e. y < 0.2L, and at distances further than x = 20L from the sink. 
For example: if y/x = 0.1 then the cross-channel and sinkward velocities become 
comparable at  time f t  = 200, or about 20 days. 

For very large times ft+ a the sinkward velocity is stea,dy everywhere and is 
given by 

(x > 0) qN Y -- qNf 2 Y u = -- 
fn y2 + (N/  f )2 z2 27c f 2x2 +iI?z2 (x2 + y2 + ( N / f ) 2  z2) i  

(4.14) 

From (4.14) in the limit y + 0, u + - qS(z) H(x), i.e. for positive x, the withdrawal flow 
collapses to a line jet a t  the level of the sink as in the case of non-rotating stratified 
fluid. 

To summarize, a t  a given location x at distances y %- x from the right-hand wall the 
dynamics resemble those described by MI. Close to the right-hand wall the 
withdrawal flow closely resembles that of Pao & Kao (1974), in that the withdrawal 
layer continues 40 collapse for times t 2 f-’. This conclusion can be explained by 
appealing to Kelvin wave dynamics. Kelvin waves are trapped a t  the right-hand wall 
but may have frequencies much less than f. Specifically, the wave component of the 
solution (4.12) has frequency w = fz/x and phase wt. At the level of the sink z = 0 the 
Kelvin waves have the same phase and vanishing frequency and thus interfere 
constructively (see Bretherton 1967 ; MI) to produce large velocities a t  the level of 
the sink. Outside the boundary layer, and indeed on the left-hand wall, Kelvin waves 
have no influence and only inertio-gravity waves exist. Inertio-gravity waves have 
frequencies with a lower bound off  meaning a steady-state sinkward velocity is 
reached a t  times t - f -’. For such times the thermal wind balance, fv, - gp2.po, still 
determines the withdrawal-layer thickness (S - f L / N )  even though w vanishes on the 
left-hand wall since, from (3.2) and (3.4), pz will also vanish in the same limit. 

For a reservoir which can be modelled as a narrow channel of finite width W but 
extending infinitely far downstream from the sink, there will be some distance 
downstream x such that x %- W (i.e. the width of the boundary layer is greater than 
the width of the channel) and thus the ensuing dynamics will be governed 
predominantly by Kelvin wave dynamics. Thus for, say, the Wellington Reservoir, 
which has a mean width of 500 m (Ivey & Imberger 1978), a t  a distance of 5 km from 
the offtake the withdrawal dynamics are better described by Kelvin wave dynamics 
rather than the two-dimensional theory of MI. A scaling analysis incorporating these 
ideas is developed in the next section. 

5. Scale analysis for a narrow channel 
Consider a reservoir and let L be a measure of the distance from the sink to the 

point of observation and let W be the mean width of the reservoir. The previous 
sections showed that if W < L then the withdrawal flow is established by Kelvin 
shear waves and, as a consequence, the cross-channel velocity is small and may be 
ignored. It is assumed the flow has become steady through the action of viscous or 
nonlinear effects. Moreover, steady state has been reached before the withdrawal flow 
has spun-up, via compression of vortex filaments, sufficiently for the cross-channel 
velocity to be important relative to the sinkward velocity. The transition between 
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the linear adjustment stage described in the previous sections to the steady-state 
investigated here is not studied. This transition has recently been investigated by 
Herman, Rhines & Johnson (1989) for the case of free-surface adjustment of a non- 
diffusive fluid where it was found that the nonlinear effect of vortex stretching 
favours anticyclonic circulation in the downstream half of the channel. 

The various scales for the withdrawal-layer thickness at steady state under these 
conditions are now investigated. The vertical lengthscale is given by 6 (i.e. the 
withdrawal-layer thickness), where 6 4 W ,  L the horizontal lengthscales in the y- and 
x-directions respectively. Under these conditions, together with the hydrostatic 
approximation, the governing equations are 

u,+w, = 0, (5.1) 

In the following scaling analysis the Prandtl number, Pr = V / K ,  is assumed to be O( 1 )  
as for temperature stratification. 

The sink flow is driven by the along-channel pressure gradient and therefore (5.2) 
can always be assumed to be significant (see Condie & Ivey 1988, for a similar 
argument regarding an intrusion in a rotating stratified fluid). 

First assume that convection of species dominates over diffusion of species in (5.5). 
This, in turn implies that convection of momentum also dominates over its diffusion 
by viscosity. This yields a scale for the perturbation density 

P - PoF61g.  (5.6) 

u - N6. (5.7) 

Eliminating P from (5.2) and (5.4) and using (5.6) and (5.1) gives 

This is no more than the phase speed of an internal wave with vertical wavelength 
6. 

Now assume that the withdrawal flow is confined to a width b from the right-hand 
wall, where b < W .  Further from the right-hand wall there is essentially no motion 
toward the sink. This situation is different to a very wide channel in which the cross- 
channel velocity is significant (zero by assumption) in which case the scaling of MI  
applies. Using b as the lateral (y) lengthscale, (5.3) and (5.4) combine to give 

b - N6/f, (5.8) 
i.e. b is the Rossby radius of deformation of the Kelvin wave determining the 
withdrawal-layer thickness. 

Conservation of mass requires qW = b6u whence, using (5.7) and (5.8), 

6 - ( q W f / F ) f .  (5.9) 
The withdrawal layer is of constant thickness and, from (5 .Q also of constant width. 

If b > W ,  then W is the appropriate later scale and the withdrawal-layer thickness 
becomes 

This the thickness obtained by Imberger et al. (1976) for the non-rotating case. The 
withdrawal layer is uniform across the width of the channel. This result is expected 

6 - (q /N) i .  (5.10) 
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a > l  R > 1  6 - ( q / N ) k ,  b -  W 
R < 1  S - (uL/N)f ,  b -  W 

a < l  R > a  S - ( f q W / P ) i ,  b - N S / f  
R < a ,  a c ~f b - NS/ f  
R < a ,  a > Rz 

S - (vL/N)k, 
6 - (uL/N)f ,  b -  W 

TABLE 1 .  The various force balance regimes 

since the Rossby radius of the Kelvin wave determining the withdrawal-layer 
thickness is greater than the channel width and hence rotation cannot be important. 

Comparison of the withdrawal-layer thickness (5.9) and (5.10) yields the transition 
parameter 

a = ( q N / W y ) i .  (5.1 1 )  

If, in (5.5), species dominates over species convection, then the following scale is 

p p o P s 2 W / g K .  (5.12) 

obtained for the perturbation density : 

As before, elimination of P from (5.2) and (5.4) and substitution of (5.12) gives 

s - (VL/N)+.  (5.13) 

Thus, unlike the inertially dominated case, the withdrawal-layer thickness is 
obtained immediately from the along-channel momentum equation (5.2) and is 
independent of rotational effects. Physically, this is because steady state is obtained 
through the action of viscosity dissipating the Kelvin waves. Thus only the vertical 
lengthscale over which viscosity acts is important in determining the steady-state 
withdrawal-layer thickness (Imberger 1980), not the horizontal velocity, and thus 
rotation does not influence the withdrawal-layer thickness. However, since 6 
increases like Li with distance from the sink then the sinkward velocity decreases 
within the withdrawal layer and thus it is expected that rotation influences the 
lateral scale of the withdrawal flow. In fact, using (5.3) the lateral lengthscale can be 
shown to again scale as the Rossby radius of deformation b - N6/ f, where 8 is given 
by (5.13). This gives a width which grows like L+ downstream and eventually 
becomes uniform across the channel, when b = W or a = Ri. A Rossby radius which 
grows like Li is perhaps somewhat surprising but can be explained by realizing that 
the withdrawal layer in the buoyancy4iffusive balance consists of a continuous 
superposition of Kelvin waves of different vertical scales. 

The scales for the withdrawal-layer thickness and length can be classified 
according to  a two-parameter system R and a (see table l ) ,  where R = FGri is the 
parameter used by Imberger et al. (1976) and a = ( q N / W f 2 ) i .  The scaling scheme 
thus generalizes the scaling of Imberger et al. (1976) to include the effects of rotation 
in a narrow channel. 

As an example illustrating the above scales consider the field data reported in Ivey 
& Imberger (1978). They measured the withdrawal layer a t  a distance of L = 5 km 
from the offtake and compared this with the theory of Imberger et al. (1976), with 
the appropriate values of the constants multiplying the scales determined 
numerically, or by experiment. They found the measured values of the withdrawal- 
layer thickness to be, on average, about a factor of t)wo greater than that predicted 
by theory. They explained this discrepancy by postulating that the diffusion 
coefficients of momentum and temperature (the stratifying agent in this case) to be 
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a factor of 10 greater than that of their molecular values. Alternatively, the scaling 
arguments advanced in MI  suggest the possibility of thickening of the withdrawal 
layer due to rotation without having to appeal to increased diffusion coefficients but 
their theory considerably overpredicted the withdrawal-layer thickness, owing to the 
neglect of sidewalls. Consider the value of S calculated using the scaling scheme 
developed here. For the particular reservoir operation studied by Ivey & Imberger, 
the Wellington Reservoir has a mean width of W = 500 m, p = 0.0134 m s-l, N = 
0.022 s-l and f / N  = 3.3 x At a distance of 5 km from the sink (so that W 4 L) ,  
using molecular values for the diffusivities, it is found that R = I .5 and a = 0.6 which 
implies from table 1 that 

(5.14) 

i.e. the withdrawal-layer thickness and width are influenced by rotation. Compare 
these values to the prototype values of 6 = 2.5-3.5 m and a mean width of 500 m 
(Ivey & Imberger 1978). Thus a dynamical balance in which rotation is important 
could explain the discrepancy between field data and non-rotating withdrawal 
theory. It should also be noted that the point sink theory of Ivey & Blake (1985) 
overpredicts the withdrawal-layer thickness in the case of the Wellington Reservoir 
data set (it gives 6 = 4.7 m). In the absence of a coefficient multiplying the scale 
estimate (5 .8)  and given the difficult nature of the field measurements, it is difficult 
to be more precise in stating whether rotation is important or not in determining the 
withdrawal-layer structure of the Wellington Reservoir. Indeed the values of R and 
a are very close to their critical values of unity. In a real reservoir situation other 
factors may also complicate the idealized model presented here. These include 
nonlinerity of the density profiles, topographic vortex stretching and vorticity 
sources other than planetary vorticity such as that introduced by wind stirring and 
river inflows. 

S - ( f q W / P ) i  = 1 m, b - 300 m, 

6. Concluding remarks 
The withdrawal of a stratified fluid from a rotating channel of finite width has been 

studied. Solution of a formal initial/boundary-value problem shows that the initial 
potential flow is modified by a series of waves with vertical wavelength h/n. One set 
of these waves (Kelvin shear waves) is trapped within a distance Nh/ fn of the right- 
hand sidewall. In addition, there is another set of waves (Poinear6 waves) which are 
analogous to waves which establish the withdrawal flow for the case where there are 
no sidewalls. As a consequence, the establishment of the withdrawal flow depends 
critically on its width. In a wide channel a boundary-layer structure exists where far 
from the right-hand wall, beyond the influence of Kelvin shear waves, the transient 
flow resembles that of MI. In a narrow channel Kelvin shear waves dominate the 
withdrawal flow establishment. The vertical structure of the withdrawal flow is 
investigated for large times compared to the inertial period and shows that the width 
of the boundary layer is of the same order as the distance downstream from the sink 
and the flow within the boundary layer is unsteady in that it continues to collapse 
while outside the boundary layer it is steady. The behaviour is explained in terms of 
Kelvin wave radiation, which may have frequencies less than f and, in particular, 
have vanishing frequency at  the right-hand wall where a continuous superposition of 
Kelvin waves of the same phase leads to large velocities toward the sink. 

The initial evolution of the flow examined using linear theory shows that the 
vertical lengthscale decreases with time, implying that both nonlinear and viscous 
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effects eventually become important. The ensuing steady flow is studied using scaling 
analysis incorporating both viscous and nonlinear effects. A classification scheme for 
withdrawal-layer thicknesses and widths is developed for narrow channels where the 
cross-channel velocity may be ignored relative to the sinkward velocity. This 
generalizes that of Imberger et al. (1976) in that it allows for the possibility of the 
sinkward velocity being in geostrophic balance with the cross-channel pressure 
gradient. It shows that if the parameter a = (qN/ f 'W); is less than unity then 
thickening of the withdrawal layer due to rotation is possible. The scaling scheme is 
applied to data obtained from the Wellington Reservoir (Ivey & Imberger 1978) and 
shows that rotation could be important in the withdrawal dynamics. 

The above results can be related to the experiments performed by Monismith & 
Maxworthy (1989). There are some differences between the model used here and the 
experimental arrangement they used, namely the experimental tank they used was 
of finite length and a point sink is used rather than a line sink. As is shown here, they 
showed from their experimental results that Kelvin shear waves propagate away 
from the sink initiating the withdrawal flow. Owing to the finiteness of the tank, they 
propagate cyclonically around the perimeter of the tank, initiating an anticyclonic 
withdrawal flow. They observed that the flow field spins-up due to compression of 
vortex filaments by the falling free surface which produces negative vorticity. 
Negative vorticity is also produced in this model as vortex filaments are compressed 
in the withdrawal layer. It is this production of negative vorticity which is 
responsible for the breakup of the withdrawal flow into the series of counter-rotating 
gyres observed in the experiments of Monismith & Maxworthy. In  any real fluid there 
will exist a viscous boundary layer on the sidewall in which the vorticity is positive, 
f l  - -uy. When there is sufficient negative vorticity produced by vortex filament 
compression to match that in the viscous boundary layer, separation of sidewall 
viscous boundary layers into counter-rotating gyres will occur. Monismith & 
Maxworthy also attribute the observed instability in the withdrawal flow to positive 
vorticity in the viscous boundary layer. 

We are grateful for elucidating discussion with Professor George Veronis and Dr 
Greg Ivey. Dr Stephen Monismith, Duncan Farrow and the referees also offered 
helpful suggestions on earlier versions of the manuscript. One of us (N.R.M.) has 
been supported by an Australian Postgraduate Research Award. 

Appendix. Laplace transform inversion of (2.11) 
Consider the following Laplace transform : 

1 
g(s) = -exp S [ -a ( s2+b2) i ] ,  

where g is the Laplace transform of g ( t ) .  Rewrite (A 1 )  as 

In  (A 2) denote the transform in the square brackets by f(s) and its inverse by f ( t ) .  
Inverting (A 2) yields, using elementary results of Laplace theory, 

g ( t )  = H ( t - a ) -  f(z)dx. s, 
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The inverse of f(s) can be found in Roberts & Kaufman (1966, p. 251) and is 

Substitution of (A 4) into (A 3) yields 

which is the result (2.12). 
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